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SUMMARY

In a previous reportc") a statistical theory of radar
detection was presented in outline form. The mathematical
details were omitted, in order that the main ideas and results
might be made available as soon as possible.

This report contains the mathematics that led to the
results presented in Ref.28.

In addition, several subjects are briefly discussed
that were not covered in Bef.28. These are collapsing loss,
antenna beem shape lose, the effect of signal injection, limiting
loss, and moving target indication.

For ieferencea see page 111.
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SYMBOLS

a a amplitude of sine wave relative to R.M.S. noise level

°* - one of the independent variables in the function Q(a,,6)

a it' central standard moment

- one of the independent variables in the function Q(a,/3)

B a half-power antenna beamwidth

C. a coefficient in the Gram-Charlier series

CO a characteristic function

8ij - delta function

e a base of natural logarithms

f - frequency

IF, - confluent hypergeometric function

P - Campbell and Foster notation for characteristic function

GO - Campbell and Foster notation for anticharacteristic function

r W the g-mma function

SrN - probability that the sum of N noise variates will exceed the bias level

Hi a 0' Hermite polynomial

i a index, subscript, or /-

I X incomplete gamma function as defined by Pearson (8)

I a . modified Bessel function of the first kind

Jv - Bessel function of the first kind

K. U th cumulant

K.*" - standard ith cumulant, or sometimes a modified Bessel function of the
second kind

Li a integration loss

Le a collapsing loss
a• generalized Laguerre polynomial

IV a number of excess noise variates integrated withiN signal plus noise variates

n - false alarm number

11' a /N

N 8 number of variates integrated

"Ihis symbol has a different meaning in RA-15061.II This symbol is used in more than one sense in various places, but other meanings shouldbe obvious.
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Pu cj~C
P *sine wave amplitude

P* -probability

PO - probability that noise will exceed the bias level at least once within false
alarm time

PN aprobability that the sun of N variates of signal plus noise will exceed the
bias level

(P Oh derivative of the error function

AP aP R.N4.S. noise level

Q(a,/) modified Lommel's function

R* 1 envelope amplitude or radar range in RIR
R0  a idealized radar range

p a collapsing ratio, ratio of total number of variates integrated to those
containing signal

S cathode ray writing speed

am - standard deviation

P (y-y)/I:, semi-independent variable in Gram-Charlier series

T. incomplete Toronto function
U 04 moment about the mean

AU. - Lommel's function

a* normalized envelope amplitude

Vi a Llh moment

w(f) - power spectrum

W -21f

X power signal-to-noise ratio

Y normalized detector output

- integrator output for the sum of N variates

Yb abias level

IlTia symbol has a differenL meaning in RA-1S061.

"This symbol in used in more than one sense in various places, but other meanings should
I be obvious.
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A STATISTICAL THEORY OF TARGET DETECTION

BY PULSED RADAR: MATHEMATICAL APPENDIX

BASIC FORMULAE RELATING TO THERMAL NOISE

Both the thermal noise voltage across a resistor and the noise voltage due to
the shot effect in a vacuum tube approach a normal distribution when the number
of electrons involved per second in the processes tends toward infinity. In prac-
tice, it may usually be assumed that the total noise voltage between any two points
due to any combination of thermal, shot, and cosmic noise sources can be represente.
by the distribution function

V2

dP * - er (1)

where P0 is the mean square value of the noise voltage( 19), This distribution is
valid provided all elements involved in the composition of the total noise voltage
have been linear.

If such noise is now passed through a linear filter of center frequency fJ,
having a pass band which is narrow compared to f. , the output will have an enve-
lope, which has a probability density function

R2

dP e(2)

For references see page 111.



where R is the amplitude of the envelope and tP0 is the mean square noise voltage,
given by

0 -(f)df (3)

W(f) is the so-called power spectrum of the filter and is simply the square of the
absolute value of the amplitude transfer function of the filter.

If the input to a filter consists of a sine wave of frequency f5, as well as
noise, then the probability density function of the output envelope is*

Ai - 50+p R

dP - e I 0  )dR, R>0

dP a 0 R <0

where P is the amplitude thdt the sine wave would have at the output of the filter
in the absence of noise, and I0 is a modified Bessel function of the first kind
(see footnote, page 13 ).

The envelope of the output hai a correlation time which is approximately equal
to the reciprocal of the bandwidth of the filter. In simple language, it is im-
probable that the envelope will change by an appreciable percentage in times much
less than the correlation time, but it is quite probable that it will change by a
goodly percentage in times large compared with the correlation time. It is probably
a good approximation to assume that values of the envelope 1/1f seconds apart are
independent, where Af is the bandwidth of the filter. By assuming such a discrete
process it is possible to materially simplify calculations which would be very
tedious if exact integration processes were used, while at the same time sufficient
accuracy is obtained for most practical purposes.

A further justification for this assumption in the pulsed case shows in the
results. Changing the factor 1/1f to k/Af for the correlation time has only the
effect of changing the false alarm time by the factor k. The probability of detec-
tion turns out to be a very insensitive function of the false alarm time, so that
if k is any factor of the order of magnitude of unity, the results are affected to
a negligible extent.

It is of some interest to note that the same form of distribution function occurs in other
problems. For instance, if •0 represents the mean square velocity of a gas due to ordinary
turbulence, and P represents the translational velocity of the whole mass of gSa relative
to some fixed reference, then the density function of Eq.(4) gives the probability that
the total vector velocity at any point in the gas will have a magnitude between R andp3 + dR (24).

The same density function also represents the probability that a bomb will hit at a distance
between R and R + dA from a given point if it is initially aimed at a point whose distance
from the given point is P The mean square aiming error is represented by qt. the distri-bution being assumed Gaussian (47).

04
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DEFINITION AND EFFECT OF DETECTION

A detector is defined as any device whose instantaneous output is a function
of the envelope of the input wave only. Thus

y u *"o) FWv) (5)

wherey is the output of the detector and V is the normalized amplitude of the envelope.

If P/VT is replaced by a, Eq.(4) may be written

NdP ve '''Io(av)dv, v >0 (6)

dP a0 V<0

Eq.(5) solved for V is V - g(y)) (7)

If V is eliminated from (6) and (7), an equation of the form

dP - f(ay)dy (8)

is obtained for the probability density for the normalized voltage at the output
of the detector which has the characteristics given by Eq.(5). For example, if y
V 2/2, then Eq.(8) becomes

dP a e7Yzo(2Viy)dy, y>0 (9)

dP w0 y<O

where a2/2 has been replaced by x. The quantity x may be identified with the power
signal-to-noise -atio, commonly used in radar literature.

EFFECT OF VIDEO AMPLIFIERS

Since a complete radio receiver usually has one or more stages of video ampli-
fication following the detector, it would seem that one would want to calculate
the probability density function for signal-plus-noise at the output of the video

3
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amplifier. This can be done theoretically, as has been shown in an excellent paper
by Kac(s2 ), but the mathematical labor is great. On the other hand, it has been
shown experimentally(31) that the signal threshold is practically unaffected by
the video bandwidth until it becomes less than about % of the IF bandwidth. Since
video bandwidths less than %/ .f the IF bandwidth are quite uncommon in practice, it
appears best for the sake of simplicity to assume the video bandwidth infinite in
all the work which follows.

When the results have been computed, assuming an infinite bandwidth, it will
be possible to modify them in an approximate manner so that they become valid for
any video bandwidth. This is explained on page 59, under the title "Collapsing Loss".

PROBABILITY OF DETECTION WITH NO INTEGRATION

The calculations necessary to determine the probability of detection when
exactly one correlation interval is available are quite simple compared with the
case where the output over many correlation intervals is available, and hence the
former case is taken up first. In a pulsed system this corresponds to using a single
pulse, while in a c-w system it is equivalent to observing the output for a time
t a 1/4f, where Af is the over-all effective bandwidth. In either case this amounts
to observing the receiver output for one correlation interval. If the output exceeds
the bias level, the signal is observed or detected (see pages 9-14 of RA-15061.
A Statistical Theory of Target Detection by Pulsed Radar(ae), hereafter referred to
as No.1, for complete definitions of detection and bias level).

It will now be shown that the probability of detecting a given signal x is
independent of the detector function, everything else being held constant and only
one variate being taken from the density function of Eq.(8). The false alarm time
has been defined as the time in which the probability is % that the noise alone
will not exceed the bias level (Eq.(15). No.1), but it will be best here to keep
things general and denote this probability as P0, rather than as Y2. Eq.(15), No.1,
then becomes

p 1 I-P/n r F (10)
0 N

where the subscript N denotes the number of variates and F is simply an abbrevia-
tion. From Eq.(8),

r - f(0,y) dy (11)
fyb

where the symbol yb is now used for the bias number. Then the probability of detec-
tion is

)GIN)

Sf f(ay) dy (12)

Y6
4



but since y u F(v), or v - g(y), Eq.(1l) may be written

9a 2 (Yb)

g7 y0 veTdv e (13)

and

g(Yb) V2 1og . (14)

Therefore Eq.(12) becomes

co V2 +a2

P, f ve 2 Io(av )dv (15)

which is independent of the detector function.

The integral of Eq.(15) must be evaluated by approximate methods. This function
will appear in several places subsequently, and is defined as*

cc V24a2

Q(a,/3) * J Ve" 2  1(av) dv . (16)

Footnote on Q Functions

"It does not appear possible to express the Q function in terms of a finite number of
known functions. The Q function is similar to Lommel's functions and in fact can be ex-
pressed as

Q•o.,j3) - 1 - e-- [iU1(-,.8a W)- - J

where U1 and U2 are Lommel's functions of the first kind. This idezatity may be proven
using tlie definite integrals given in Watmon(l), pages 540 and 541, especially Eq.5 of
page 541. By successive integration by parts, the Q function may be expanded in infinite
series giving . , 2,_r,

OCO)a e E(2 I,( A r

or
~2 42r

Q(aB) a 1- I a I= (0)

The similarity of the first of these expansions to the series for U,(.,z) given in Eq.(1),
page 537 of Watson, is interesting. A simple expression for Q(a,C.) analogous to Eqs.(9)
and (10), pag 538 of Watson is

*(a~a) + ea o() (Continued on next page.)
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In terms of this notation, Fq.(15) may be written

P, - Q(a,V2 log 1/ 1') (17)

This is the probability of detection only if - =1/f, where rd is the time available
for detection. In general the probability of detection is given by Eq.(18), No.1,

1l -(l PM)(18)

which follows from the definition of detection given on page 9, No.1. The double
subscript notation PN.. is used here in place of P'. If N 7, .N is written
simply as PN.

P " (R/R/) can be calculated by means of Eqs.(18), (17), the tables of Q, and
the simple relation

R 1 21/4 (19)

WO z/ 4 - -,

(see Eqs.(10), (11) and (12), No.1).

Footnote on Q Functions (Cont'd)

which is useful in special cases. An asymptotic expansion for Q which is of value is
given by Rice(Is), page 109:

•. -- + a'I - +_- 4
F L • 2 V6 ...

where 0'-(T) is given by the error function of Eq. (100). This expression is most useful
in the region where a,8 >> I and a. >> I,-al.
The Q function is a special case of the incomplete Toronto function described in the
footnote on page 28 . The relation is

Q(l,,)=1 - T (1,-G.2-)

The Q function is graphed in Figs. 13 and 14.

A table is available in Ref.47 but the intervals are too large to be of general use. Project
RAND is computing an extensive table of the Q function which will be published as a sepa-
rate report.

6
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A very good approximation for the quantity I",,which appears in Eqs.(10) and
(17), may be derived from Eq.(10) by writing

e /n log,P -- log 1 (20)

which is valid when n' >>1, a condition nearly always true in practice. Eq.(10)
then becomes

N 1
F log. (21)

If Pa - 1/2, as is assumed in all the curves in No.1,

F * 0.693 (2
L21• (22)

Eq.(17) may consequently be written

SU Q .A 4.60 loglo n + 0.730] (23)

As an example, let R//Ro - 0.595, and n - 10'. Then P, a Q(4, 4.37),.which has the
value 0.410 from the table given in Ref.47. Note that this is a point on the graph
of Fig.l, page 22, No.1.

GENERAL CASE - INTEGRATION OF N INDEPENDENT VARIATES

If the output of the receiver (or filter) can be observed for a length of time
much greater than one correlation period, it is of advantage to integrate the out-
put. The simplest concept of an integrator is a device which linearly adds the
voltage output of N samples from the detector. The time elapsing between samplings
must be at least one correlation period, in order that the samples may be considered
to be independent. If the sum of N variates* of signal-plus-noise exceeds the bias
level calculated from the probability density function for N variates of noise
alone, then the signal is said to be detected.

SReaders with some staetitical experience will recognize that here is a case of testing a
statistical hypoth3sii. It is known that the n observations y,, Ya, ..... Y come from
a unuivere whose density function f(y,a) depends on the unknown parameters a; it La required
to decide, on the basis of these observations, which of the two values ca or as is a better
estimate for a. If a, is the true value of a, let p, be the probabi'lity of making the
mistake of choosing a. as the correct value; similarly, if a2 is the t.'ue value, let p. be
the probability of choosing a2. Suppose p1  .OS. Then a sittistical decision method can
be devised for which p, a .0S and for which p. will be less then for any other method with
the same p,. See, for example, Kendall, vol.2, pp. 2 72-275(e).

7



The integrator may take the sum of the squares of the N variates, or, in general,
the sum of N variates where each variate has been processed by some general func-
tion. As long as the same weight is applied to each variate, the integrator will be
called linear. The function which the integrator applies to each variate will be
called the law of the integrator. Any nonlinear integrator will be inferior in opera-
tion to a linear integrator with the-same law and would ordinarily never be used
intentionally in practice. Cathode ray tubes are nonlinear, however, and thus fall
short of other types of linear integrations.

The law of the integrator acts in exactly the same way as the law of the detec-
tor. Thus, if the detector output is y w (F(v) as given by Eq.(5), the integrator
output is

N NY • E¢y = k'4[F(0)]. (24)

It is obvious, as far as the theoretical problem is concerned, that the only
function of importance is

S. ((25)

There will be an infinite number ot combinations of 0 and F functions which will
produce the same function %P and hence the same theoretical results. In all the work
that follows, the output of the combination of integrator and detector for one
independent variate will be called y t p(v), and the sum of N variates will be

Y ,. (26)

The symbolic solution for the case of N variates corresponding to Eq.(15) for one

variate is not too difficult to obtain. The starting point is Eq.%8) for the proba-
bility density function for one variate. The characteristic function for this
distribution is

C f1f(a,y)e edY . (27)

The characteristic function for the probability density function for the sum of N
independent variates is then simply

C,, . (c,)' (28)h r



and

dPN cYJ C( a,W)e-WY (29)

or

dPN G( a, N, Y) dY. (30)

Corresponding to Eq.(l1) is

* IFN - G(0,N, Y)dY (31)

and to Eq.(12),

PN • G(a,N,Y) dY . (32)

If Y6 is eliminated from Eqs.(31) and (32), there results a solution for P1 as a
function of r. , N, and a, which is the desired result.

It is found in most cases that the integrations required in Eqs.(27) to (32)
are not possible in terms of known functions.

THE SQUARE LAW DETECTOR WITH N VARIATES

It seems, by a process of trial and error, that the best possible function
for 00() in Eq.(25) to produce integrable functions in Eqs.(27) to (32) is

U(v) a Av2 , y . (33)

Though this represents .a square law for the combined detector and integrator law, it
is usual to think of it as representing a square law detector coupled with a linear
law integrator.

Lla



In Eq.(33), the only effect of the constant A is to multiply the bias level
Y6 in Eqs. (31) and (32) by A. The value of P, in Eq.(32) is independent of A. It is
convenient to let A a 1/2, or y * v2/2. By diPrect substitution from Eqs. (6) and (27),

C,. eYXz1o (2 y)ePYdy (34)

where x - a2/2 and p - iw.

This integral may be obtained from pair 655.1 of Campbell and Foster(7). In all
pairs taken from Campbell and Foster it is necessary to replace p by -p, since they
use dPS for the first integration. As long as the same notation is used in both
directions, the order of signs iz. immaterial. In order to avoid confusion, the minus
sign will be used in the exponent in the first transform'ation and the plus sign in
the second transformation. Thus all of the characteristic functions which appear
hereafter are really C(.p) rather than C(p). In this way there is direct agreement
with the Campbell and Foster tables as well as with tables of the Laplace trans-
form. Equation (34) becomes

iX

C, a e eP+ (35)

The characteristic function for the sum of N variates is then simply

CM ,0 (P+01 e4P . (36)

By means of pair 650.0, Campbell and Foster, the probability density function is

dPa, e'YNXI - ( 2 v/N'•xY)dY Y> 0 (37)

*0 Y<0

Graphs of this function are shown in Figs. 1-7. The density function for noise alone
(x z 0) is found most easily from pair 431, Campbell and Foster, to be

Se' (38)

10
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BIAS LEVEL FOR SQUARE LAW CASE

The bias level, Yb, is by Eq.(31)

r .M f""-e-yf6 (N-1)!dY (39)

The incomplete gamma function, as defined by Pearson(8), is

I(up) e"vP dv (40)

In terms of this function, Eq.(39) becomes

IýNON-1 . (41)

The tables of I(Ap) extend to p - 50, and values of the function are given to seven
places. Thus, for N < 50, and n' < 106, the bias level Yb may be obtained directly
from Pearson's tables. Other methods must be evolved for N > 50 or n' > 106. The
normal approximation to Eq.(39) is unsatisfactory for N less than several thousand
because of the fact that the integral is over a region which is far out on the tail
of the curve. This can be seen from the Gram-Charlier series which will be taken
up presently.

The integral of Eq.(39) may be evaluated directly by successive integration
by parts to give

YN- +. +, & (N-1)(N-2) (42)

r (N-l)! L Y6 IY]

In the regions of interest Y,>N>> 1. The series in the brackets may be approximated by

1 + 1 . . .... . (43)

Yb

044
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in this region so that Eq.(42) becomes

V-1- N.-b
r !YbNl

S (N-)! ( 1 N-1)

By the use of Sterling's approximation for N!, Eq.(44) reduces to

F (Tb-N÷l) (45)

Though the expression looks more cumberacme in this form, it is actually much simpler
to use in calculations than is Eq.(44). Substituting for r from Eq.(21) gives the
expression

logon - 0.24 + 2 loglo N + log 0 (Yb-Nl) (46)

+ 0.434 (Yb-N) - N log1 o N

Graphs of this function are shown in Figs.8 and 9. For N a 1, the exact expression
for Yb from Eq. (39) is

Yb a 2.3 loglo n + 0.37 (47)

whereas Eq. (46) for N - 1 reduces to

Yb - 2.3 loglo n + 0. 45 • (48)

The difference is seen to be practically negligible.

12



CUMULATIVE DISTRIBUTION FOR N VARIATES OF

SIGNAL PLUS NOISE - SQUARE LAW DETECTOR

Knowing the required bias level for a given false alarm interval, it is now
necessary to integrate the density function of Eq.(37) from this value to infinity
to give the probability of detection for a signal of strength x, thus

m ) e _*A (21N-xY)dY . (49)

This integral is not soluble directly in terms of well-known functions. The order
of the Bessel function* can be reduced in steps of 1 by successive integrations by
parts, so that the last remaining integral is of the type given by the Q function

" The following are same of the useful identities concerning the modified Bessel functionnof thefirst kind: a~sr

Sa (2) 2"2-i)+3 4"(2a) )(2n+)..
PRO r!(nmr)! hi

Z0(O) a I + i ...

Asymptotic expansion:

l ()a i (Xa) (A
f ,Lz. Z10(,)ds a ,xeJz W, 1w

Sf 0.21 0(x)dx a xC"'[low, .0 r'(2)]
f e"'o( x)d a ase"(.o(z) + I" ( 0)]

f ,-21 A,,)d, N e'[-,((+Xz0 (s) 4 ,z, (,)

Relations Letween the I. functions and the hypergeometric functions will be found in the foot-
note an p. 21. 

13



of Eq.(.6). An easier way to arrive at the same result is by the use of the charac-
teristic function. To get the cumulative distribution from -CO to Y of any density
function, it is only necessary to find the anticharacteristic function of C/p, where
C is the characteristic function of the given density function (see pair 210, Campbell
and Foster). Thus from Eq.(36),

The term I/p(p+0) may be expanded in a series

I 1 1 1 1
P(p -+,) - (7p- )7 ( . (51)

The mateof the first term of the series, bypairs 210, and6S5.1, Campbell and Foster, is

e-N•I O'•Zo(2T•)dy (52)

The first two terms of PN are thus

1- ef Y 'VZo (2VF Y) dy (53)

uf 
t~ V 2+2Nxf ,2rh'e Zo ( vvl2-') dv

using the definition of Q from Eq.(16). All the succeeding terms may be obtained
by using pair 650.0 Campbell and Foster.

Mate of e'Yp'1(2)t ) . (54)

As in Campbell and Foster. f is here used in place of w./2w or p/2wri.

14



From Eqs.(53) and (54),

2fi*Q(V2N.'_2,v')+ e- 6.( ) Ir(2'Nx~b) (5
r% 2

This form of solution for . is practical for numerical calculation only where N is

less than about 10.

The characteristic function in Eq.(50) can be expanded in another manner using

,.raw1 *1p~~lM•E_ (P+I)r •(56)

This leads to an expression for 1 complementary to that of Eq.(55) of the form

By equating (55) and (57), one obtains one of the known expansions for Q given in
the footnote on page S. Equations (55) and (57) may also be obtained directly from
Eq.(49) by repeated integration by parts. Equation (57) may also be obtained di-
rectly from Eq.(55) by means of the identity

a - tMI,.(W)(58)

given in MciobertM'), page 32, and one of the known series for Q.

For the special case Yb - Nx, the function Q of Eq. (55) is simply

Q - 1[1+ e"Y&IO(2Yb)] (59)

(see footnote, page 5 ), and Eq.(55) becomes

42 . • O(2Yb) + TI(2Yb) + 2(2Yb) ---- r,_(2Y6 ) . (60)

PN 2

_2
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This formula is useful for checking special points for values of N around 10 or below.

None of the methods developed above are suitable for calculating P# for large
values of N.

In the next section the general method of Gram-Charlier series is developed.
which will be useful in a number of succeeding problems concerning distribution
functions over large ranges of variation of N.

EXPANSION OF FUNCTIONS IN GRAM-CHARLIER SERIES

The function O(y) is defined by

V

(e (61)

The Hermite polynomials may be defined by the relation

,(y) . • //(y) (62)

where the superscript i stands for the Oh derivative with respect to y. The 4)
functions and the Hermite polynomials are biorthogonal, that is

# )8.. 0 Oi (63)

Therefore it is possible to expand any reasonable function in a series of the form")•

f(Y) " E a, 5i(Y) (64)
isO

The coefficients a. may be evaluated in a manner analogous to the Fourier series
methods by multiplying both sides of Eq.(64)by IV(y) and integrating from-. to m. All
terms drop out but one, giving

a JISt! '.® fi(y)f(y)dy (65)
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It is usual to- make the substitution t - y - y/O- before making the expansion, thus
causing the second and third terms of the series to vanish. The notation is

t, - the average value of y, or the first moment

Cr2 2 the variance

v. the nt" moment of the distribution.

J 'f~ynje(y)dy (66)

Equation (64) is replaced by

Ify) a g(t) a Zc~c•(t) (67)

and Eq.(65) by

(- 1): dY)

S)g(t)dt (68)

It follows at once from Eq.(68) that c0 a /, c1 1 C C2 0. The moments about the
mean, or the central moments, are defined by

" (y-*y)f~y)dy (69)

and the standard moments about the mean by

* _ (70)

a.I 17
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The coefficients ci in Eq. (68) may be easily written in terms of the a's. The first
few are

C 4 - (71h)

ca "1. ,3 (71b)

C5 "a (as -1oa 3 ) (7 lc)

* L .(a 6 -15a 4 30) (71d)
6!

C€ = - C (a .- 21 a, +15as) (71e)7.

¢ 1 a - (N-28a.÷+210a 4 -315) (71f)

Saj(,,-36a,7+378sL-126o% ) (71g)9!

Formulae for the j's in terms of the V's can be obtained directly from Eq.(69), giving

2 - (72.)

AL -2 - VI v~ 7

" - 2 372b)

18 A4 0 V4 4V 's 6 dv 1 2 -3zý 
7 c

1- 
- - -- -- -



V Vd ldv + 44 7d

A6 V6- 6vs u, + 15, - 2 0 ,v + iSV.4 - V1 . ( 72e)

Continuations of this series are obvious.

The process of obtaining the Gram-Charlier expansion is now evident:

1. Find the moments of the distribution.

2. Obtain the central moments from Eq.(72).
3. Obtain the standard central moments from Eq.(70).

4. Obtain the coefficients from Eq.(71).

S. Write the series for f(y) from Fq.(67).

It turns out that the beat grouping for the terms of the series of Eq.(67) is
different from the natural sequence (a). Such a regrouped series is termed an '"Edgeworth
series" and is actually used in this work. The grouping used by Edgeworth is

0 (73a)

0, 3 (73b)

0, 3, 4, 6 (73c)

0, 3, 4, 6, 5, 7, 9. (73d)

This means that if the 0 and 3 terms are used as the first approximation, the addi-
tion of terms 4 and 6 gives the next order approximation, and so forth.

MOMENTS OF SIGNAL PLUS NOISE, SQUARE LAW DETECTOR

The momenta of a distribution may be obtained by using the characteristic
function as a moment generating functions. Thus

S(dpt , (74)

* Kendall, p.54(").
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In the case of the distribution function for the. sum of N variates of signal plus
noise with a square law detector, the characteristic function is given by Eq.(36),
and the moments are

eN~lYV . (75)

Though the first few moments may be obtained by direct differentiation, it is better
in this case to expand in a McLaurin's series and obtain the coefficient of p4/i!. Thus

eP' Ni (Nx) 5
e j + N + + ( z a( 7 6 )'

(p4l), (p + 1 +)N (p+I )N+ (p-l)N+2 (76)

The coefficient of pi/i! is, by direct expansion of each term in Eq.(76),

(_I)i (N*i)! -N x + (N-i)(N• l) (Nx)+' - (77)
(N-i! N N(N÷) 2! 3

•(-1)' (N~i-i)! F(N+iNNx)(N-l)D ssNiNN)(B

where IF, is the confluent hypergeometric function.! Thus the moments are

"The following are same of the useful relations concerning tha confluent hypergeometric function:

(a, c,z . rE ) i o~ rW (a+r) zr * 1 + !JL + 4(+ ... a. r(4,bC.)
'r'a o r! flh c~r) 1C1! 2! 211 2

Lim 6 -

Asymptotic expansion:

*•(sa'.z) ~ '••(")'( [1 , (1-)(C-G) ]
Kumwr's first transformation:

F, (a.c. ) - e',F (a-a.C,-Z)

Kummer's second transformation:

Pecursion relations:

aI,(4+1' C. 4) + (s-c) I,(a-1, c, z) U (+2a-c) IF, (a. C. A)

eIF, (a+1,.,s ) + s C-G)A (a. ,c.z) U IF, (a.c.z) (Continued on next page.)
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e"(Nt- e N F(N+i,N,Nx) (79)

or

(N~i-i)!(N-l)! 1F (-i,N,-Nx) (80)

Hypergeometric function (Cont'd)

4 IF, (al,-.•..) + (I-a) IF, ( 0. C-,. z) -(a+i-C) IF, (a. C, )

CAj (4-1.c a.) + 31,(a. C+e S) a C1FI (a. C. )

(a-4)/, (a-I.c s ) + (C-i) IF, (4, C-l2) 0 (~a-1) IF, (a. a, 2)

(C-a) 2 IF (a. 01. 2) + c(C-I) IF, (0, C-1, Z) a C(z+c-I) IF (4, C, )

F,(a~c, 2) 0~ LF (+I. a+ 1. 2)

Relations between hypergeometric functions and other functions:

IF (a. .Z) , es

IF (, a+i.--) a aa S4' 0 ,' ,-."t"dt a anow (•, -i)

using Pearaon's notation for the incomplete gamma function.

SF (b.i., a) - C', 'o' ,-" I,.•. a-i
Cta 6dt a f rf 2j

,(-n,l,z) * L (a)

(original LAguerre polynomial)

If,(-A a+1. ) n!Tl(ail) &' (S)

(generalized LAguer.e polynomial)

I,(-I.* V21'+ 1 H) I

, H1i, 1.-2) e1[',-,,(J.) .(]
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Eq.(80) being obtained from Eq.(79) by Kummer's first transformation. The first
four moments are

V, N(l+x) (81a)

v 2 "(Nx)2 + 2Nx(N+1) + N(N+l) (81b)

Y3 (Nx) 3 + 3(Nz) 2 (N+2) + 3Nx(N+l)(N+2) + N(N+÷)(N÷2) (81c)

v4 (Nx)4 + 4(Nz) 3 (N+3) + 6(Nx) 2 (N÷2)(N+3) (81d)

+ 4Nx(N+l)(Ne2)(N+3) + N(N÷i)(N÷2)(N÷3)

The generalized Laguerre polynomial L4a)(z) is defined by

L(') (z) N r( ) F,(-na..,z) (82)

Comparing (80) and (82), it is seen that the momenta expressed in terms of the
Laguerre polynomials are

v - i.!L("N)(-Nz) . (83)

Another generating function for these polynomials is available through the relation

L,') (z) d • d (e-,z".+) (84)

The moments about the mean may be expressed in terms of the moments about the origin
by means of Eqs.(72a-e), resulting in:

4o " (85a)

I - 0 (85b)

22
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A2 - 2Nx + N - N(2x+l) -*.2 (85c)

A3 - 6Nx + 2N 2N(3xz+) (85d)

AS4 a 12(Nx)3 + 12Nx(N.2) + 3N(N÷2) (85.)

" 120(Nx) 2 + 20Nx(SN+6) + 4N(SN+6) (85f)

A generating function for the central momenta may be obtained by multiplying the
generating function of Eq.(75) by ea"'giving (see pair 207, Campbell and Foster)

Ni is. (86)
COP (.li..B)

The momenta of Eqs.(85a-f) are most easily obtained by logarithmic differentiation
in Eq. (86).

The standard momenta about the mean are obtained from Eq.(70), and are

% ul (87a)

1 - 0 (87b)

1 (87c)

2(3z÷1)"-L3a . .I. (87d)

N/ 2"(2zX 1) 2

6(4x÷1)

"M4 a 3 + N(2x.+) 2  (87e)
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There is an approximate method of computing the significant part of a which is
based on the fact that co of Eq.(71d) is always nearly equal to €•/2 (see page

259, Fry•s)). Thus

1 ( + 10 a,' - 30 (88)

or

1O(108Xz78x+13)
ad Is + N(2x41) . (87f)

For noise alone, the momnts are given by

(N+ i-i)! (9(Ni-1) I(Ni) (89)

and the central moments by

(N~i-l) !
(N-i! 1 1 (-,l-&N,-) .(90)

Equation (90) was obtained from Eq.(86) by putting x-0 and expanding in a series.

THE GRAM-CHARLIER SERIES FOR THE SQUARE LAW CASE

The coefficients of the series may be obtained by use of Eqs. (71&-d) since
the standard central momenta are now known (Eqs.87a-f). They are:

0 a- (91a)

, Me 3  -0 (91b)

C3 a-- 3X+1 (91c)
3Nl'4 (2'x * )l

24
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4X+1 (91d)
C4 4N(2x+l)

2

(3X+ I) ' -(9 0C6 •18N(2x~l )3 9e

From Eq.(67) the required series is

dP dY C[O°(t) + C0 3(t) c4
4 (t) + C606(t) .-.. (92)

where

L-.V (93)

Ya a N(I+x) (94)

and the c's are given by Eqs.(9la-e).

Note that the grouping of terms is according to the Edgeworth scheme given in
Eq.(73). Note further that as N tends to infinity, all the coefficients go to zero
except co. Thus

0.

dP -. 2 dy (95)

a s N-. In terms of Nand x

dP V'2rN( 1+x e d dy (96)
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Eq.(95) is precisely a statement of the central limit theorem, and the derivation
given is essentially a loose proof of the theorem.

The cumulative distribution is easily obtained from Eq.(92) by means of the
simple relation

J'4 3,(t)dt - (' 1 (t) (97)

giving

N J f(y)dy * *[l-e(T) - C32 ,(T) - C4  (T) - C5 '(T) ---- (98)

where

Tm (99)

and

~1. 
1V0 1(T) e"'T . (100)

The function 0 1 (T) is tabulated in the W.P.A. tables(°. This differs from the
definition given for (#-(y) in Fry, page 456 but is used here because of theW.P.A.
tables.

The series of Eq.(98) was used to calculate all the curves of Figs. l-50, No. 1,
with the exception of the cases where N - 1. In most cases the first two terms of
the series are sufficient, though in some regions of small P four terms areneeded.

SAMPLE CALCULATION

Assume N a 10, n 101

From Fig.8, or Eq.41, Y6- 30.0
R

Let o " 1.0 so that x - 1.0
0
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From Eq.(94), v, a N(1,x) a 20.0

a - • 5.48

Y-1 30.0 -20.0
Fromn Eq.(99), T a a 1.830

"(7) ,"a 0(1.828) - 0.9325

+(1-0'(T) * 0.0338

From Eq. (91c), 03 a 3. JL. - -0.081

3Na(2x.l)s

From Eq. (91d), 0 a 4 k ) 1 0.0139

4 4N(2x,1)2

From Eq.,(91e), C6 a (3x+1)"Y. ~~~18N(2lX+1)a•003

0b'(1.828) - 0.174 (See p.64 for references on
tables of the derivativeb

03(1.828) - -0.470 of the error function.)

0'(1.828) - 0.990

CS02 (T) a -0.0141

C4 3(T) - -0.0007

60 5 M(T) - +0.0032

P - 0.0338 + 0.0141 + 0.0007 - 0.0032 - 0.0452

This point, P - 0.045, iB/0 - 1, may be found on Fig.20, No.1.

INTEGRATION LOSS, SQUARE LAW DETECTOR

It is of interest to express the effect of noncoherent integration as a loss
with respect to coherent integration(63). This may be done by defining the integration
loss an

N2
L•• 10 1O8o' , (100a)
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where

N - number of pulses integrated
X, a required value of signal-to-noise ratio to produce given probability of

detection for N - 1.
x* a required value of signal-to-noise ratio to produce the same probability

of detection for N - N.

Thus Li is a function of P and n. However, it turns out that the dependence on P
and n is very small.

In the case of coherent integration, X2 is always equal to xI/N, so that L1 *

0. With noncoherent integration, x,3 is always greater than x IN, so that noncoherent
integration is never as efficient as coherent integration. The results of calcula-
tions are given in Figs. 10 and 11. One observes that the dependence of Li on P and
n is quite small. Thus by means of the graph of Fig. 12, which gives x as a function
of P and n for N - 1, and any one of the curves of Fig.10, it is possible to obtain
a fairly accurate value of x for any P, n and N.

GENERAL CURVES OF THE CUMULATIVE DISTRIBUTION FUNCTION

The integral of Eq.(49) is a function found in other applications than the one
discussed in this paper. It is desirable to have graphs of this function available
in general form rather than the specialised form of Figs.l-50, No.1. The integral
is a special case of the incomlete Toronto functions described by Heatley(4)' and
Fisher(17), which is defined as

T,(&,n,r) m 2r* 'e'P" ts'ne'It1(2rt)dt . (100b)

Using this notation, Eq.(49) for the cumulative distribution function becomes

PN T"N 1 - N-1, .~' (100c)

" In normal correlation theory, the quantity

is given by Fisher' 11) as the limiting form. for large samples, of the frequency element
of the quantity Bs . nefis where As is the sample estimate of the multiple correlation
coefficient of a random variable y with other variables zx, X ..... X , a. is the siaz
of the sample, and 8$ b ,%p* where p is the population multiple correlation coefficient.
The cumulative distribution is

and can be obtained from the curves in Figs. 13 to 32.
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The function plotted in Figs. 13 to 32 is

Tv ( 2N- 1 , N-, I'' (100d)

and P. may be found easily from these curves for any values of Y,, N and x.

THE LINEAR DETECTOR - N VARIATES

The linear detector is usually more difficult to deal with than is the square
law detector. The distribution function for one variate of signal.plus-noise is

dP - ve 1(av)dv . (101)

In attempting to find the distribution for the sum of N variates by the method
of characteristic functions, the immediate trouble is that the characteristic function
of Eq.(101) does not seem to be obtainable in closed form. To give an idea of the
difficulty involved, the characteristic function for one variate of noise alone is
obtained as follows:

an
C M e" • -ve"T (102)

This is pair 903.3, Campbell and Foster, and may be evaluated directly by completing
the square or by forming a differential equation, giving in either case

2

C a 1 T pe.'erfc P (103)

or in terms of cu

a 1- edz + 2 (104)

To raise this expression to the N"' power and then obtain the anticharacteristic
function is practically hopeless.
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The distribution function for the sum of two variates of noise alone is ob-
tainable by use of the convolution theorem, giving

dP e " -1 eer - dy (105)

and the cumulative distribution is also obtainable, giving

f f (y) dy - e7 +27 y-Teer f (106)

However, when N > 2 there seems to be no closed solution corresponding to Eq.(105)
or (106). Since these cases are for noise alone, the signal-plus-noise situation
must be attacked by other means.

It turns out that if the moments of the distribution for one variate are known,
the moments of the distribution for the sum of N variates may be found directly.
Formulae are given, for instance, in Cramer, page 345, (10) for the first few central
momenta, which are

*2 2107a)

SL - NI3 (107b)

1O3 3 + l5N3A 3 15N 2M 4  45N 2 310d

The corresponding coefficients in the Gram-Charlier series then become

C - -
(108a)

c4  - I (108b)

c0 a1 2 (108c)
* 6!N
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*IThe a's in Eqs.(108a-c) are the central standard moments for one variate. Note
that, in the square law case, if N is put equal to 1 in Eqs.(85c-f) and the resulting
A.'s used in Eqs.(107a-d), the jA's for N variates are correctly given. If a moment
generating function can be found for the case of N variates, then it is immaterial
which method is used; but in the case in which such a function is not available, the
Eqs.(107) must be used (or some method essentially equivalent).

To handle the linear detector it is now sufficient to find the moments for one
variate only. Rice( 1 s}, page 107, gives the required expression as

.K) 2(-,,x (109)

Skice also gives the first two moments as

V1O4 uV~i(+ X) () *k 1 ) (110 a)
2)2

V2 a 2(lex) (lOb)

_To calculate3 one needs to know the function, ,F(-3/2,l,-z). This nay be obtained
by use of the recursion relation

•'] F1(a÷1,c,z) + (a,-C) F,(,a lc,z) (2a÷z-c) ,F(a,c,z) (111)

by putting a + c " 1, z -x. The result is

V3 2lVI (2+z) -IJ e.i0(7 ) (ll0c)

also

V 4  4(2,41412) .(110d)
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The corresponding central moments are

. 2(1+x) - V(12a)

*2? - 2u., ( 1+2x) -V-e-TI,(.. (112b)

u4 4(2+4x +X2 ) - 3¼ V4 _~' 4V 1-x)V' ~'ezxo() . 112c)

The standard central moments, and then the C's of Eqs. (108a-c), are directly obtain-
able from these formulae, though the process is somewhat tedious due to the cumbersome
form of Eqs. (112a-c). The ftnctions v, to v4are shown graphically as a function of
z in Fig. 34.

To obtain the bias level Y for the linear detector for N > 2, one can use the
G.C. series for noise alone. Setting z x 0 and Vt,- V7r in Eqs. ll2a-c) gives

2-- - 0.429 (113a)

/3 -i122(7r-3) - 0. 1772 (113b)

a 375 2 - o . 598 (113c)

and

a• A3 . 0.632 (114a)

0. 1053 (114b)
3J N 1/2

and

a 4 3.26 (115.)
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0.0108 (115b)
4 N 1bN

0.00555
C6  N (1Sc)

The cumulative distribution function is now equated to rY giving

0.693N 0. 1053 0.0-108 0' 0 0 5 5 5

0.693 -I-€-(T -- "-/ 0#(T 83T) -N OS (T) --- (116.)
n 2"N

where
Tm 4-v, N Y4-N 7j

For any given n and N, Ybmay be found from Eq.(116) by trial and error methods.
If an approximate value of T is found by neglecting all but the first term in Eq. (116),
a more accurate value obtained by Newton's method is

f'(T,)

It is better, however, to plot Eq.(116) giving n as a function of T and N from
which is finally obtained the bias level graph of Fig. 35 showing Yb as a function
of n and N for the linear detector.

Since for finding the bias level it is necessary to know the distribution
functions only for large values of the argument, it is possible to find an ap-
proximate solution valid in this region. Consider a distribution function given by

V2

dP - ve"T dv (117 a)

for v going from -w to+ca. The Nth convolution of this function will be nearly
the same for large values as if (117a) went only from 0 to 0o, because the large
values in the sum of N variates are most probably produced by addition of large
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values of every variate, and for large values (in fe f- .. -s) .e values)
the two distribution functions are identical. The characteristi% faiction of Eq.

(117a) is given by pair 710.1 of Campbell and Foster to be

C -Vpe'r (117b)

For the sum of N variates

CN - (-l)'(2 7r)'pe 2 (117c)

The probability density function is obtained from pair 740.2 of Campbell and Foster as

N e

where D is the parabolic cylinder function of order N. In terms of the derivative
of the error integral as defined in Eq.(62),

d Ptjý. (2r' O(N -Z y y>> 1 ( (117e)

Note that for N - 2, Eq.(117e) becomes

ci aP ( 117f)

Referring to Eq.(105), the exact expression for this case, it is seen that Eq.(117f)
can be obtained by neglecting the first term and replacing arf y/2 by 1, both of
these approximations being very good if y >> 1.

The approximate cumulative distribution is easily obtained from Eq.(1117e) by
direct integration and gives

N
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The bias level is easily obtainable from this expression by equating it to r and
solving for Y, by means of the tables of ct', or by plotting graphs. The method is
not very practical for N > 20 since suitable tables do not exist.

It is interesting to note that no such approximation as Eq.(117g) is obtainable
for the square law case.

Graphs of the probability density functions for signal-plus-noise have been ob-
tained by numerical convolution for some selected cases and are shown in Figs.36 to 41.

RESULTS OF THE LINEAR DETECTOR CALCULATIONS

The difference in results for the linear and square law detectors turns out
to be so small that extreme accuracy must be used in the calculations to show the
relation in its true form. One such comparison graph was calculated and is shown
in Fig. 42. Also, in Fig. 43 is shown the difference in db in the two cases at P =
0.50. The two are identical at N - 1, the linear law becomes better by a maximum
of 0.11 db at N - 10, the two are again equal at N - 70, and the square law then
becomes better and asymptotically exceeds the linear law by 0. 19 db as N - having
reached 0.16 db at N u 1000. These results show conclusively that there is little
to choose between the linear law and square law as far as theoretical signal threshold
is concerned.

EXPANSIONS IN LAGUERRE SERIES

In certain cases, particularly for low values of N, the Gram-Charlier series
may not he the best-suited type of expansion for distribution functions which are
zero for all negative values of the amplitude. For low values of N, a suitable
expansion for such functions is the following:

f (y) - aeyy'0L(y) (118)
isO

where Lý(y) is the generalized Laguerre polynomial defined by Eq.(82), or by

e~z-a d'
L0(z) . 'e (119)

The orthogonality relation which makes the expansion possible is

1"(a4il )J e-2zzL z)Li(z) 0 bij (120)

35



(see Copson('}, page 269).

Thus, from Eqa.(118) and (120), the coefficients are determined by

a 0- L (y)f(y)dy (121)

Note that Eqs.(ll8), (120) and (121) are analogous to Eqs.(64), (63) and (65), re-

spectively, for the Gram-Charlier expansion.

Let a new variable t w y//. Then

f(y) a g(t) . c¢o'tML•(t) (122)
S.0

where

C F(+, 1)J LI(t)g(t) dt L ((=+ J L1)YI)fy • (123)

The first few Laguerre polyhomials are

La(2) - 1 (124.)

L'(z) a -z (124b)

2L0(z) - (a+1)(a+2) - 2z1(a+2) + z2 (124c)

6L(z) W (a+1)(a=+2)(a÷3) - 3z((a.2)(a+3) + 3z2 (a+3) -z 3 P (124d)

Therefore

S" -2'1)•' "(125)

¢= . a+ 1)(a+ 2--•1 (a+ 2) v, (126)
r '(a ÷3 ) ,ý 8 )32

/36
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Since there are two arbitrary constants, a and 5, in the expansion of Eq.(122), it
is possible to make c, - ca P 0 by a proper choice of a and 8. These relations are
easily determined by equating Eqs. (125) and (126) to zero and solving simultaneously.
The results are

i- -1 •-~ I(127)

VV1dL
2  72

V2-1, ( •2
S " V. "v (128)

and

C-2 (129)
C0 /3a.4+ I 42r(.L

C a =C2  0 (130)

Cs a +r• • 3 ) -1 131)

The coefficients past co are so complicated that the whole value of this type of
series seems to depend on the fact that the first term alone is often a good ap-
proximation. This approximation is

and the corresponding cumulative distribution function is

P f (Y) dy - 1 (133)

~.2 rQ4)

37

K



where I is the incomplete gamma function as defined by Eq.(40).

There is & striking analogy between Eq.(132) and the corresponding normal
approximation. In both cases the distribuLion for the sum of N variates is simply
obtained by multiplying both u and o-2 by N, As N - OD, both the normal approximation
and Eq.(132) approach the true distribution (and each other). In any particular
case, however, the convergence properties of one approximation will be more useful
then the other.

In the square law case, for x a 0, us N and o-' a N. Substitution of these
values in Eq.(132) gives

dP a --- e-YYNsdY " (134)

Note that this is the same as Eq.(38), the exact expression. Thus in this particular
case the first term gives the whole correct result. The third coefficient from
Eq.(131) is easily shown to be zero, as all the following coefficients will be.

In the square law case where x 0 0, v, a N(1+x) and o72 - N(1+2x). Substitution
of theme values in Eq.(132) gives

+jV) +.] 2
dP (I * (135)

1+0rrN( Iz)2 L( 71+ 2 X)Y(l÷z)rL" ",12X

and from Eq.(133),

I [ • Z_ I(I X ) 2 I]
P • 1 - 0 . (136)

A comparison of the particular case N - 3, x - I is shown in Fig.44. Curves are
given for the exact distribution function (Eq.X37)) and the two approximations given
by Eqs.(96) and (135).

For the linear case with x 0 O, - M NvW7 and a2 u N(2-1r/2), the cumulative
distribution is, from Eq.(133),

P • I " ' iJ . (137)
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OTHER SERIES APPROXIMATIONS

It is theoretically possible to develop still other series approximations for
the various distribution functions. For instance, it might be thought advantageous
to use a sum of terms of the typeyde'Y12. particularly in the linear case. While
this turns out to be possible, even the first coefficient is so difficult to calcu-
late that the process is impractical.

METHODS OF INTEGRATION INVOLVING

SUBTRACTION OF NOISE

Certain practical difficulties arise in maintaining the bias level at the
correct value in an electronic detector, particularly if the number of pulses inte-
grated is large. The trouble may arise from fluctuations in amplifier gain, the
bias supply, or the noise level itself.

A solution of this problem is to have the gain of the amplifier, or the bias
level, or both, controlled by some sort of average value of the noise output. Ob-
viously the time constant of the control device must be neither too long nor too
short. One scheme which has been used is to subtract a pulse known to consist of
noise only from each possible signal-plus-noise pulse* (see paragraph 3, page 11,
No.1). Thus in the absence of a signal, the averag value of ashy number of composite
pulses will always be zero, and the required bias level will be comparatively low.

DISTRIBUTION FUNCTIONS FOR COMPOSITE PULSES
OF SIGNAL-PLUS-NOISE MINUS NOISE

When a noise pulse is subtracted from each signal-plus-noise pulse, the theo-
retical distribution functions will be entirely different from previous cases. The
square law case is the only one that can be treated in any reasonable fashion. The
distribution function for one variate of signal plus noise is given by

dP . e"'' t0(2V 'F) dY (138)

and the characteristic function is

C a* 77 eP1 . (139)

This subtraction can he accomplished by means of 4 gate which operates at double the
repetition frequency. On every other geats only a noise pulse of reversed phase goes through
the integrator.
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Subtracting a positive noise variate is equivalent to adding a negative noise variate.
The distribution function for a negative noise variate is

dP ey Y < 0 (140)

*0 Y>O

and

C --- (141)

To obtain the characteristic function for the awn of a variate from the distributions
of Eqs.(138) and (140) it is only necessary to take the product of the characteristic

fupctiona given by qs.(139) and (141), giving

C . e'_1: a -ff (142)
l-p2

7his is the characteristic function for one so-called composite pulse, The characteris-
tic function for the sum of N composite pulses is simply

C "P )(143)I; ( l-p2)

In the case of noise alone (x * 0),

C- (144)
( 1-p 2 )N

and the anticharacteristic function is, by pair 569 Campbell and Foster,

d t KtiIY I dY (145)
K 1  IId

where K,.% is a modified Bessel function of the second kind and is given by the
finite series

KV..(,-) " r!(N-r-1)!(2z)r (146)
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The cumulative distribution for the sum of N composite noise variates may be found
by use of the series (146) and term by term integration. However, for N greater
than 3 or 4 the process rapidly becomes impractical.

Again, it is necessary to find momenta and proceed by means of Gram-Charlier
series. For noise alone, the moments are easily found from Eq.(144) to be

, 0 0, i odd (147)

* ,ieveni
(N-i) !

in particular,

A2 - 2N o-2 (148)

A4 - 12N(N.1) (149)

IA, a 120N(N+I)(N÷2) (150)

and

03 * 0 (151)

a4 N 3 + (152)
N

45 30me • •" + •'• (153)

The only coefficients different from zero in the first six are c. and c4 to the

order of 1/N.

1 (154)
8N

Thus
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and similar to Eq. (98) is the cumulative distribution

AY

2L a 2 + J 8N V )(156)

The bias number is found by setting this expression equal to r and plotting kb
as a function of n and N. Results are given in Fig. 45. In the special case N - 1,
the cumulative distribution function is simply e"/2 for Y > 0, and the bias number
is obtained from this expression rather than from Eq.(156). The anticharacteristic
function of the general case, Eq.(143), may be obtained by use of the convolution
theorem, pair 202, Campbell and Foster. Let

S Npz[ (157)

F2  (158)

Then from Eq.(37),

G (2) *--Nx I..2V1(2V') y>O (159)

S0 y<<0

and by pair 525.2, Campbell and Foster,

G3 0 y > 0 (160)

(..y,) N-,I

(N-i)! 
<0

Applying the convolution theorem gives

ON - ,.Y , i-v_ (-Y)N-' #-YZ,,(.2vNx' )dy Y,
(NPW .d J Nxl e'(y•1" (161)

For Y < 0, the lower limit of the integral in Eq.(161) is 0 rather than Y.
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PROBABILITY DENSITY FUNCTIONS FOR Y < 0

To evaluate the integral in Eq.(161) when the lower limit is zero in straight-
forward but tedious. First one evaluates the integral

f(k) JN7(•"i;) e IN (2V•)dy (162)

by use of characteristic functions in a manner entirely similar to that used in
Eqs. (74) to (80). The characteristic function of the function of Eq.(162), with
k -a , is

Nx

C * -- (163)
(p+2)'

and

f(k) 1)a VF, (kN,- . (164)
(N- 1)!2 Ne2

Then by expanding (y-y)N- 1, one obtains the coefficient of

(N-1) (-.y)N'1'k

k! (N-l-k)! (165)

and from Eqs.(164), (165), and (161),

e Y- fi f(N- )YI . dPN ( i) ! (Nl)!(166)

(N- 1 to (k-l! (.y,-1-h

or

Nx Ne T3 k=-N 1(N~ k- 1) IF , -_k ,N ,- y -
d/P, dY • (--)k2÷'" .Y),-- y < 0 (167)
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In terms of Laguerre polynomials, using Eq.(82),

dV '4N, I (Y)) Y<0 (168)ds(N0 k-l)

The first few polynomials are given inEqs.(124a-d). Some special cases of Eq.(168) are

N-- 1 P1  dYLy < 0 (169a)

N-2 d0 y Y<0 (169b)2. 4 \2

3* ( 2  __
3X

N- 3 dP3 - dY- +3x - - (2+ Y v Y<O • (169c)
16 13 16 2 1

The cumulative distributions for Y < 0 may easily be obtained by integrating (169a-c).
Obviously, the expressions in Eqs.(167) and (168) are practically useful only for
small values of N.

PROBABILITY DENSITY

FUNCTIONS FOR Y > 0

To find a general expression for Eq.(161) giving the distribution function
when y > 0 is a task of tremendous proportions. Consider, for instance, the special
case N a 1. Equation (161) becomes.

dP1  dYe"2 Y>O (170)

By means of the substitution y - v2/4, this becomes

dPj dy e-- :e .o(v/7)d v Y>o. (171)
2 "
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This can be expressed in terms of the Q function defined by Eq.(16).

Y.1

dP1 " dY' 22Q(r(, 2V) Y>o . (172)

Eq.(169a) was

y-A
e2

dP1  - -2dY. Y <0 (169a)

Thus, for the case N - 1, the whole distribution function is described by Eqs. (169a)
and (172). A graph of this function for various values of x is shown in Fig.46.
Note that if x - 0, Q(0,2VY) - e-2y, and Eq.(172) for Y > 0 reduces to

"Y

dP, a -!-dY Y>0 (173)

and from Eq.(169a)

eY
dP, - edY Y<0 (174)2

when x a 0. Thus over the whole range of Y

dP, a - dY (175)
2

which checks Eq.(145) when N w 1.

For N - 2, Eq.(161.) becomes

2zdP2 • dYe•'zJ (y-Y)e'2Y 1i( 2 4'xy)dy Y>O . (176)

This integral may also be evaluated in terms of the Q function. The process requires
a large number of integrations by parts and is very time-consuming. The result
turns out to be

dP a dY _ - .'!.- r)ititiis 2rY) Y xY022-Y ) 12 _%Y[!YL _ ( 2 4" .Y~

Y> 0 (177)

--S
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In
This equation is already so complicated as to be nearly useless. Thus it was not
thought worth while to seek a general expression of this type for arbitrary N when
Y > 0.

Note: If z * 0 in Eq.(77), it reduces to

dP3 = dY-1- (+Y) Y > 0 (178)

which may also be obtained from Eq.(169b) by substituting -Y for Y.

CUMULATIVE DISTRIBUTION FUNCTIONS

The effort in Eqs.(161) to (178) has been concerned with obtaining the proba-
bility density function for N variates of signal-plus-noise minus noise. To find
the cumulative distribution functions exactly is difficult, especially for Ypositive.

A case which can be solved, however, is that for N - 1. For Y negative the
answer is simply obtained from Eq.(169a) and is

P a l 0 .< (178a)
2

For Y positive, using the result o1 7q.(172),

- c2 ey Q 2,1y) dy Y>O (178b)

Since the value of P, at Y * 0 is, from Eq.(178a), 1 - e 2/2, Eq.(178b) may be re-
written as

1 .J ej e Q(y z2, qy) dy (178c)

hut from the definition of Q in Eq.(16),

Q(Vbut 2v-') -e"-'l-lo(vV-z)dv 2e • 3 (2/•)dz (178d)
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Replacing Q by its defining integral in Eq. (178c) gives

P, a l - -e' dyey e"'3o(2Vdx)d. (178e)12 J0 e esf2zy

Integration by parts is now used, letting

U . JOe 2 zIO(2V-xi)dz

dv - eydy (178f)

du a -e-2 •Yo(2Vx2')dy

Iuu • * e~ S

V ey

IJV0 e cc e' 2 'z(2vY'Y)dz " 2 (178g)

2 Q( 4, 2VT) - . (178h)

Thus

1 * 1 - '2v) + e" j du (178i)

or

P,- - - •ex e'Y1o(2/.)dy (178j)

The integral term in Eq.(178j) is just 1 -Q(V22-x,/'2Y), and the final result is

P ,g Q( V' x V2 ) e 2 Q(Fvx,2r) Y>O (178k)

/9 2

For x - 0, Q(0,,) - e 2, at.d

y e-Y

P, e-Y L"- (e"2) e- - (1781)
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agreeing, as it should, with the result obtained from Eq.('145) by letting N - 1
and integrating. For Y - 0, Q(a,0) - 1, and

I

P1 1 (178m)

agreeing with Eq.(178a) when Y - 0.

The bias number for use with Eq.(178k) is obtained by

-0.693* e' (178n)
n 2

or

Yb a 2.30 log 1o n-0.327. (178o)

In Fig. 47is shown a graph comparing Eq.(178k) with Eq.(23) for n a 10, where
P is plotted as a function of x.

Though it might be possible to calculate the cumulative distributions for N
> 1 by a method similar to that used for N a 1, it would be very tedious. Therefore
resort is made to Gram-Giarlier series, as before. The moments are directly obtainable
from the characteristic function given in Eq.(143),

_* ( di I ),- (179)
dpi (.PT) '0-0

There seems to be no readily obtoinable expression for %ý in closed form. The first
six moments obtained directly from Eq.(179) are:

V* " Nx (180a)

U2 , (Nx)2 + 2Nx + 2N (180b)

v - (Nz) 3 + 6(Nz )2 + 6Nz(N+l) (180c)

1d4 - (Nx) 4 + 12(Nx)' * 12(Nx) 2 (N+3) + 24(N+l) + 12N(N+l) (180d)I - (Nx) 5 + 20(Nx) 4 + 20(Nx) 3 (N+6) + 120(Nx) 2 (N+2) + 6ONx(N+l)(N+2)(•

(180e)
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v6 (Nx)6 + 30(Nx)5 + 30(Nx) 4 (N+10) + 120(NVx) 3 (3N+10)

+ 180(Nx)'(N+1)(N+6) * 360N,%(N+l)(N+2)

+ 120N(N+l)(N+2) (180f)

The corresponding central moments are:

S 2
/-1 1 2Nx + 2N - 2N(i+x) - o2 (181a)

/U 2 6Nx (181b)

A4 - 12(Nx)2 * 24Nx(N+l) + 12N(N+l) (181c)

j * " 120(Nx) 3 + 360(Nx) 2 (N+3) + 36O0Vx(N+1)(NV2) 120N(+l)(N.2) •

(181d)

The central standard moments are:

" 3 (182a)

ý ('i +, ) 2

~ * 3(1÷2*)
a4 a 3 3N(1+2) 2  (182b)

45 (3z=*3x*i)

4  , 15 + N(2+z)_ (182c)

The coefficients of the series are, from Eq.(71):

3x (183a)

2 2V•'2-1+ ) 2

1+2x (183b)
O - 8N( 1+x)2

* * 1 XN, (183c)
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The Gram-Charlier series for the probability density function is given by Eq.(93) where

Y ?liI- , v, - Nx, a- v2NTl÷;) (184)

and the cumulative distribution is given by Eqs.(98) and (99). Figures 53 and 54,
No.1, showing the comparison between the ordinary case and the composite case, were
computed using the Gram-Charlier series developed above. There appears to be no
significant difference in the probabilities of detection for N between 1 and 10. For
N between 100 and 1,000, the composite case gives an effective signal-to-noise ratio
about 1 db lower than the ordinary case.

ANOTHER APPROACH TO THE DETECTION

CRITERIA-PROBABILITY THAT SIGNAL-

PLUS-NOISE EXCEEDS NOISE ALONE

The method of setting a bias level and calling any signal-plus-noise or noise
alone which exceeds this level a signal is not the only possible way of defining
detection. Another method is based on asking what is the probability that any given
signal will be larger than any noise pulse during a given interval of time"' 1 ). The
interval of time taken would logically be ihe false alarm time, as defined previously.
In this time there will be niN s n independent groups of noise pulses. If the proba-
bility that a single integrated group of signal-plus-noise pulses exceeds a single
group of noise pulses is called P(x,N), then the probability that the group of
signal-plus-noise pulses exceeds all of the n' groups of noise pulses is simply

P - (P1(xN)]
M  (185)

This probability is a little difficult to interpret properly. It means that if
during the false alarm time a signal of strength x appears, it will have this proba-
bility of being larger than any noise pulse group appearing during the same time. The
difficulty is how to pick out the largest signal over a period of time, and what
to do when many signals are present. These are reasons why the earlier detection
criteria are thought to be superior, since they provide clear answers for the above
questions. The criteria presented above may be of special value, however, when a
target is known to be present. Such is the case when a target is being automatically
tracked, and one wishes to calculate the probability that it will be subsequently
lost due to the noise exceeding the signal.

The probability density function for N signal-plus-noise pulses minus N noisepulses has been indicated in Eq.(161).

To obtain the probability that the sum of N signal-plus-noise pulses will be

greater than N noise pulses it is only necessary to integrate Eq.(161) from 0 to
O. It will be easier to obtain the probability that N noise pulses exceed N signal-
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plus-noise pulses, however, since this requires the integral from -.C to 0, and an
expression is available for Y < 0 in Eq.(167). Thus

N>SN (dyer (186)

Now one substitutes z for -Y and interchanges the suimmation and integration signs,obtaining

;-r rNk )! F (-k.N, sY a d~
P ( 21Je _ Hoes d211(187)

The integral is simply (N-k-I)!, and therefore

-z

Or in terms of La(uerre polynomials, using E8(82),

N:
e 2 k-N-IN

From Eq.(188) a more convenient form may be obtained by introducing a dummy index
i and interchanging sunmmation signs, leading eventually to

Na r 
(~

2 i 0- I (N ki-l)! (N-1)! (190)

The outside summation in Eq.(190) is obviously a polynomial in x of the N-ith degree
and with N terns. It is rather curious to note that if one puts i x 0 in Eq.(190),
the following identity results:

2'• (N+k- 1)!(1)
k-0 (N-1) !k! 2r

51



In other words, the constant term in the polynomial is always unity.

The first few cases for low values of N are:

Ie-7 (192a)

P1 2

2 V. i (192b)

P 2 . 1e+(!-X.+-x- (192c)3 2 16 128,

P 1 e.(1 29z x ) 31

32 32 48X42

Ps e (T 1 325xz 57 5 xP 4375xz8  62 (12e•,- e 1 + - +-- ÷---÷---+m,
2 256 1024 6144 32,768)

Obviously for N very large, these expressions rapidly become useless, and it is
necessary to use the Gram-Charlier series of Eqs.(184) and (98). The lower limit
Y is replaced by zero, giving for the series

* l-•[-(k T)] + c3.
2 (T) - ,'(T) - cq6 '(T) .... (193)

where

T I. ýN (194)
)2( +X)

and c,, c4 and c. are given by Eqs.(183a-c). A graph of P as a function of x and N
is shown in Fig.48. For very small values of P. more terms may be necessary in the
series of Eq. (193).

USE OF CUMULANTS IN OBTAINING

GRAM-CHAIRLIER SERIES COEFFICIENTS

It is often much simpler to obtain the cumulants for a given distribution
function rather than the various moment3. The cumulants may be defined by

K.- (-* ) dpi log, C) (195)
p5252



where C is the characteristic function of the given probability density function
(see pages 61-65 of Kendall(6 ). The cumulants, except the first, are invaria-t
with respect to a change of origin. Also, for the distribution of the sum of N
variates, it is only necessary to multiply every cumulant by N, as is evident fren
the defining Eq.(195). The coefficients of the Gram-Charlier series in terms of
cumulants are given on page 149 of Kendall. The cumulants in standard measure may
be defined as

K . (196)

In terms of standard cumulants, the coefficients of the series are:

co 1 ci , C2 " 0 (197a)

c K3 (197b)
3!

K4 (197c)

ý4 4!

. + . K, o ) . (19 7d )

The first term in Eq.(197d), K6, is omitted in the 0,3,4,6 approximatioh.

Consider the square law case where, from Eq.(35),

C -a e (198)
P+'1

logo C - x + in (p.) (199)

From Eq.(195),

- (L-I)!(i.1) •/ 1 .(200)

For N variates,

K N( i-.)!(Lx+1) . (201)

and

K(i-i' i- , (202)
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In particular,

2( 3x+÷)K3 (203a)

N112( 2 x+ I)J

6(4x+1)
K- N(2z÷I) 2  (203b)

and it is at once evident that c3, C4 , and c6 obtained from Eqs.(197b-d) are iden.
tical to the values given by Eqs.(92c-e) by means of a much longer process.

In the case of & composite pulse of signal-plus-noise minus noise, the charac-
teristic function is given by Eq.(142) and

log, C"- x + - log. (1-p 2 ) . (204)

Again by means of Eq.(195) it is easy to derive, for N variates,

K N"(i-)! Cix+2] i even

SN(i-l)!(ix) i odd, # 1 (205)

or

K • N(i-1)! [i xl,(-l) (206)

and

K ( i - ,1 [i x÷ +i + - 1 ) i]
K K- '.- i (207)

Special cases are:

1)

K• 3- (208a)

3( 2x+ l)
K4  7N(X+I)2 (208b)

and again by Eqs.(197b-d) the coefficients are seen to be the same as given by
Eqs.. (183a-c).
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In a case such as the linear one where the characteristic function cannot be
obtained, the cumulants are still useful and may be found from the moments v, by
means of the formulae at the bottom of page 63 of Kendall. The first few are:

*K 0 I (209.)

K2 L 2 -~ (209b)

K3 -v- 3 *2j + 2V' (209c)

K4 a -44VV - 3u 2 1 + *~~l (209d)

The K. are now obtained by multiplying by N and dividing by 0'. The coefficients
are then obtained as before by Eqs.(197a-d).

BEST POSSIBLE DETECTOR LAW

It is of considerable importance to know whether there may be some detector
law which will give results which are appreciably better than the linear or square
law cases which have already been considered.

The problem may be stated as follows:

These are availabli N samples

U1 I 2  ta - iff

which, it is assumed, are known to have come from either the distribution

dp1 Ue 2 dv (210)

or the distribution

dP2 a ve'Xii:o(av~dv (211)

the former being the distribution of the envelope of noise alone, and the latter

the distribution of signal-plus-noise.

N1- 'MThe probability that all of the variates vs .... VN came from the second dis-
tribution is simply

dPNf2 *dP 2(v,)dPa(112) .... dPl (vU) (212)1 55



whereas the probability that they all came from the first distribution is

dP *• d01(v,)dP1 (V2) ---- dP1( ) (213)

The ratio of dP to dPNI is the best measure of the likelihood that all the variants
came from the signal-plus-noise distribution. It can be shown that any monotonic
function of this ratio gives an equally good significance test. One arbitrarily
picks a constant which the ratio must exceed to say that it shows that the variants
came from the signal-plus-noise distribution. This constant determtnes the false
alarm time.

Taking the ratio of Eq.(213) to Eq. (212) and substituting values from Eqs.(210)
and (211) gives

i-"N t, ÷+ 4

iTr, ve 10 (aui)
dPN2 ,al (214)

'ff V, e 2

I.'

or

0( ) (215)

where X is the constant which determines the false alarm time.

Taking the log of both sides of Eq.(215) gives

log,, 1(av,) > log6 k +- (216)
2

Note that nothing has been said in the foregoing discussion about integration.
Now, however, Eq.(216) says that the best thing to do is take the log of Io of
each variate, add these functions for each variate, and require the sum to exceed
a certain value. Clearly this calls for a detector and integrator which has the
combined law

S• log 10(av) (217)

The meaninp of this result is really quite remarkable (at least to one who is not
a statistician). It says, in effect, that by having the sum only of N variates
which have been subjected to the law y a log 10 (au), one has as much useful in-
formation as if the individual values of each of the variates were known (as far
as determining to which distribution the variates belong)*.

If the two distribution functione to be distinguished are normal, then the simple gUs of
the N variates, or the mean, is the best criterion. In other words, a linear law would

be the best if the envelopes of noise end signal-plus-noise were normally distributed.



Suppose that the signal strength is very small (which would make N large for
any reasonable probability of detection). Then Io(av) r 1 + a2 v2/4 and

I a~ v2• a 2 V 2

y - log 4,(au) ; log (i÷-•-) 7-- (218)

In this case, the square law is seen to be the best possible choice. If, on the
other hand, the signal strength is large, 10 (av) e/v/V'7a and

y - log 10(av) ; log -av log 27av i av (219)
V277at, 2 lg27v~a 29

Thus, for large signals ',usually small N) the linear law is beat.

It should be pointed out that the results for the two extreme cases, square
and linesa' law, are not very different (see Fig.42), and in practice a linear de-
tector would usually be preferred on account of its relative immunity to saturation
by large signals.

In the case of a human operator it is difficult to say what law is used in
the process of integration. Thus if a linear detector were used in the receiver, it
is conceivable that the operator might mentally take the sum of the squares in his
integration process, with a net over-all square law effect.

SIGNAL-PLUS-NOISE MINUS NOISE - LINEAR LAW

This case is of special interest because of the method which must be used in
obtaining the solution. Since the characteristic function for the linear case cannot
be found, it is necessary to determine the moments for a composite variate directly
from the moments for the signal-plus-noise distribution and those for the noise
distribution alone.

Using a double subscript notation, in which the first index represents the
number of the distribution function and the second index represents the order of
the moment, the following formulae can be derived at once by successive differen-
tiations of the product of the characteristic functions of the individual distribution
functions:

""1 V " 12 (220a)

V2* V'12 " L22 2* 2J1IV22 (220b)

3 " V " 1 3(•,,, + 1 ) (220c)

V4 ' V14 ÷ ,24 * 4 ( 111V7 2 3 + 6, "12 ÷ V 22v (220d)

V6 " V16 26 + 6(,VII. * ',) V 2 (•)• .1 V .24) 2 2o0V,. V23  (220e)
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The first set of moments are those for one variate of signal plus noise given
by Eqs.(109) and (ll0a-d). The second set of moments are for one negative variate
of noise alone. These are simply obtained from the first set of moments by putting
x . 0 and multiplying the odd moments by -1.

The details will not be given, since the results bear the same relation in
general to the square law case as they do when a noise variate is not subtracted
from each signal-plus-noise variate.

USE OF SO-CALLED DETECTION CBITERIA

Lawson and Uhlenbeck have made use of a quantity which is the shift in average
value of a distribution of signal-plus-noise from that of noise alone divided by
the standard deviation of noise alone, which they call the detection criterion. In
symbolic form

1"IS+N -• 4N

k M • (221)

This quantity is also called the deflection criterion, and it is implied that it
must beof the order of unity or greater to have a reasonable probability of detection.

For the square law detector, uaing the results of Eqs.(81a-b) and (85c), the
criterion becomes

k x rV" (222)

and for the linear detector

k x - • 0.957x/N (223)

assuming x to be small.

The object of these criteria is to show the variation in necessary signal-
to-noise ratio as a function of the number of pulses integrated. The results for
k in Eqs.(222) and (223) may be derived rigorously from the basic distribution
equations if the central limit theorem is assumed to hold and for probability of
detection equal to 0.50.

However, it is found from the actual results presented in No.1, Figs.l-50,
that the square root of N law given by the detection criteria is not closely fol-
lowed, even for N as large as 1,000. If a law of the form

k a xN8 (224)
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is assumed, the exponent 0 may be obtained from the data of Figs.1-50, No.1. The
results are given in Figs.55 and 56, No. 1. It is seen that & goes from 1.0 at N a
I to around 0.75 at N a 1,000. As pointed out earlier (page 28), 89 I for co-
herent integration.

It has been said that the N4 law seems to fit observed data fairly well. It
is the belief of the author that this is a coincidence that arises from the fact
that the losses due to nonlinear integration by cathode ray tubes, and human operator

losses, tend to just about equal the difference between No and N, so that the N4
law actually seems to fit the observed data.

It is rather interesting to note that if the detector law is assumed to be of
the form y - v", the detection criterion turns out to be

k - (4zLy (225)

A graph of this function shows a very broad maximum of 1 at n - 2. Thus this is a
special case, showing that for large N the square law is the best of the particular
class of functions vo. This is not as general as the proof on page 56which shows
that the square law is the best of all possible functions for small z.

COLLAPSING LOSS - INTEGRATION OF GREATER NUMBER

OF NOISE VARIATES THAN OF SIGNAL-PLUS-NOISE VARIATES

In many radar applications, an additional number of noise variates are integrated
along with a given number of signal-plus-noise variates. Such is the case when
three-dimensional data are compressed onto a two-dimensional presentation, or with
a C scope where range is not shown. The loss so occasioned is called a collapsing
loss(as). An effect of the same kind is caused if the spot of a cathode ray tube

indicator moves less than its diameter in a pulse length"1 1". Again, if the video
bandwidth is narrow compared with the IF bandwidth, the same sort of thing happens.

All three effects are handled by assuming a given collapsing ratio, p, which is
defined by

p • - (226)

0 N

where

N - number Of signal-plu3-noise variates integrated

M - number of effective additional noise variates integrated.

In the case of loss caused by low writing speed of the cathode ray beam, the effective
collapsing ratio is given approximately by

Ptff (227)
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where

d - spot diameter

s = writing speed

-r - pulse length.

Where the loss is caused by a video amplifier, the equivalent defining equation is

Bif+B.

IB (228)
where

Bij a IF bandwidth (or total combined RF and IF bandwidth where RF
amplification is used)

Bt U video bandwidth.

Mathematically, the treatment necessary to take account of M extra noise variates
is rather simple. It is only necessary to multiply the characteristic function for
N signal-plus-noise variates by the characteristic function for M noise-alone variates.
In the square law case, this results in

e (,) e' '(p)e P+1  
(229)

CN (p+yl)+ (P+i)NP

It is apparent, by comparison with Eq.(36), that the results obtained for P * 1
can be used directly to obtain results for any p.

Care must be taken in obtaining the bias level, however. Without the M extra
noise variates, the relation n' - n/N is used to find the required signal-to-noise
ratio, % ý' -: the added noise variates, the number of groups of pulses integrated
may o' r~iai nc/ remain the same. In the case of video mixing, where the output of
two independent radars is superimposed on the same indicator, the number of groups
of pulses integrated is constant, which means that n' is constant.

In the other cases where the loss is caused by narrow video amplifiers, col-
lapsing of coordinates, or slow writing speed, the number of independent groups
of pulses integrated is reduced by the factor Pef so that n remains constant as is
easily seen from the equations

n n'N (no loss) (230)

n w (pn')(M+N) a n'N (with loss). (231)

The collapsing loss is defined as

x 2
LC a 10 log1 0 x (232)

where x2 is the required signal-to-noise ratio with M extra noise variates, and
z is the signal-to-noise ratio required with no extra noise variates, such that
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the probability of detection is the same in both cases. This fixed probability
level will usually be taken as 0.90.

The procedure, after finding Xl, is to get the required bias from either Fig.
8 or 9, depending on whether n or n' is held constant, using pN as the number of

variates. From the cumulative distribution functions graphed in Figs. 13 to 32, the
value of X2 is found by multiplying the finding x for pN variates to give P a 0.90
and multiplying this value of x by p. The reason for multiplying by p is apparent
on referring to Eq.(229).

The results of the calculation are shown in Figs. 49 to 52 where L is plotted
as a function of N for P a 0.90 and N - 106. Also given are curves of 6 defined by

"-2 Na. (233)
Xl

It has commo:.ly been said that 0 should be 1/2(0)0(# ). This statement is sometimes
derived from the detection criterion given on page 58.

From Fig. S7 it is seen that if n' is constant, 8 does approach 1/2 as N- '.

However, 0 is much smaller for reasonably small N. In the case of n constant, the
square root law is not even approached as an asymptote.

It was found that the values of L and 9 are only slightly dependent on the
original values of n and P.

ANTENNA BEAM SHAPE LOSS

It has so far been assumed that the antenna pattern was flat over the half-power
beamwidth and zero elsewhere. In any practical case the beam shape may usually be
approximated by a Gaussian curve which will hold fairly well out to ± the beamwidth
from the point of maximum gain. In the case of a searchlighting antenna, the re-
turned pulses will all fall at the same place in the beam, and if this does not
happen to fall at the maximum of the beam, the loss may easily be taken into account
by modifying the expression for gain used in Eq.(9), No.! for calculating R0 such that

,92 e2

412 B2 )
.9.

where e (234)

* • azimuth angle between target and antenna axis

* elevation angle between target and antenna axis

B - half-power azimuth beamwidth

- half-power elevation beamwidth

If the antenna is scanning, the problem is entirely changed because the suc-
cessive returned pulses will be of different magnitude. It is obvious that as the
antenna scans past a target, pulses should be integrated out to some point where

* the principle of diminishing, returns sets in. It is not too difficult to determine
this point and to calculate the loss occasioned due to the beam shape as compared
with the ideal case( 4 3 ). A complete treatment which covers the general case of delay



of the received pulse relative to the transmitted pulse, off axis in elevation
while scanning in azimuth, and random orientation of the pulse pattern relative
to the antenna pattern is quite involved. However, the solution of some special
cases has shown the general character to be expected of the results.

The integration of pulses should be carried to about 1.1 times the half-power
beamwidth. This figure is practically independent of the signal strength (range)
and the number of pulses per half-power beamwidth. When the optimua, number of pulses
are integrated there will be an average loss over the ideal case which assumes
constant gain between the half-power points. This loss is in the neighborhood of
1.5 db and does not depend much on signal strength or number of pulses per half-
power beamwidth. Since this loss is so small it was not considered worth while to
reproduce all the detailed calculations here.

It should be mentioned that special care is necessary when one considers rates
of antenna scanning so fast that about only 1 hit per beamwidth is obtained. In
this case it may be expedient to make the receiving antenna lag the transmitting
antenna to compensate for the time of travel of the pulse, or to step-scan, that
is, move the antenna in discrete steps rather than continuously.

In order to calculate the probability of detection in any case where the suc-
cessive returned pulses have different signal strengths, it is necessary to obtain
the over-all characteristic function by multiplying the characteristic functions
for each pulse. Using this method it is not difficult to work out the needed results
in any particular case.

LIMITING LOSS

If limiting occurs anywhere in the receiver, the probability of detection
will be lowered, everything else being held constant. The video amplifier is the
first place where limiting will probably occur. Let the limiting ratio be defined
as the ratio of the limit level to the R.M.S. noise level. Limiting can then be
represented mathematically by replacing the probability density function at the
detector output by an equivalent function below the limit level, and a delta func-
tion at the limit level having an area equal to all of the area of the original
function to the right of the limit level. The moments can be calculated for these
new functions (noise alone and signal-plus-noise), and the probability of detection
found by use of the Gram-Giarlier series as usual. The calculations are quite tedious
and will not be reproduced here. The main conclusions are that if the number of
pulses integrated is large, the limiting loss is only a fraction of a db if the
limiting ratio is as large as 2 or 3, but if only one or two pulses are integrated
the limiting ratio must be in the neighborhood of 10 to prevent a serious loss.

Limiting in the output of the integrator can also cause a loss, but this loss
is small compared -to the loss caused by limiting of the individual pulses in most
practical cases.

EFFECT OF SIGNAL INJECTION ON PROBABILITY OF DETECTION

It has been proposed that the minimum detectable signal can be decreased by

the injection of an RF or IF carrier voltage that adds linearly to the received
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echo and the receiver noisec'l•. The theory is that the total signal will then be
large compared with the noise, and thus the so-called modulation suppression that
occurs in the process of detection with small signals will be eliminated.

In such a process, the coherence of the injected signal with the received
echo must be taken into account. If the target is moving, then the successive re-
ceived pulses may be considered to be random in phase, so that the injected signal
will necessarily be noncoherent with the echo. Analysis has shown that in this case
the probability of detection decreases continuously as the magnitude of the injected
signal increases, assuming a linear or square law detector. However, it can be
shown that the best possible detector law starts to change radically as soon as
the injected signal strength becomes comparable to noise. The analycis of proba-
bility of detection when the detector function is altered to take into account
the injected signal has not been completed. Preliminary estimates indicate that
there will be onli a small decrease in sensitivity in this case.

It might be imagined that coherence could be obtained in a system using only
one hit per target but having, say, 20 separate receiver channels with 20 separate
injection oscillators having phases spaced 12 degrees apart. Thus, the return echo
would be nearly coherent with some one of the channels. Theoretically, the improvement
in this channel would be about 1 db. However, even this improvement would be just
offset by the increased false alarm number due to the multiple channels, so that
the over-all system improvement would be nil. It seems that there is no way to
increase system sensitivity to moving targets by signal injection.

There is some possibility of increasing sensitivity for stationary targets
by coherent signal injection, but it is difficult to imagine a practical situation
where such a method would be of any use.

PROBABILITY OF DETECTION WITH MOVING TARGET INDICATION SYSTEMS

The analysis of the probability of detection for WvTI systems is quite compli-
cated. It depends on the type of receiver (lin-log limiting or IAGC), the type
of detector, and the characteristics of the storage device used. For a nonfluc.
tuating clutter and no scanning noise, the effect of the clutter with or without
the addition of a coherent oscillator is much the same as that of the injected
carrier discussed in the previous section. If a suitable detection system is used, the
sensitivity may be reduced by a small amount, due to the addition of the coho, perhaps
by 1 to 3 db.

* The sensitivity of an MTI system for high probabilities of detection is further
reduced due to the fact that the target may be moving at a speed differing from
one of the so-called optimum speeds. This effect is quite complicated and is similar
to that caused by a random variation of the cross section of a target with aspect.
A method of quantitatively treating these problems has been developed and will be
presented in detail in a future report.

If there is a fluctuation component in the clutter, due either to the movement
of the clutter itself or to the scanning of the antenna, the effect will be to
increase the amount of noise at the receiver input. This can be taken into account
by an appropriate adjustment in the value of the noise figure of the receiver that
will change R0 by the correct amount.
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TABLES OF THE DERIVATIVES OF THE ERROR FUNCTION

In order to make efficient use of Gram-Charlier series, it is necessary to
have a good table of the derivatives of the error integral (the 0 functions of Eq.
62). No satisfactory table was in existence at the time this report waswritten.
Typical of the available tables(O) were

Fry(') n - 1(1)6, x - 0(.1)4 5 decimals

Jorgensen n - 1(1)6, x - 0(.01)4 7 decimals

and an unpublished table of the W.P.A., giving

n a 1(1)14, z - 0(.1)8.4 20 decimals

RAND therefore decided to calculate a suitable table with the aid of its "BM
equipment. This has resulted in a table of Hermite polynomials, as well as in the
derivatives of the error integral, giving

n a 1(1)10, x - 0(.01)12.0 6 significant figures

A limited number of these tables are available at the present time. (RAND Document
D-350, A Table of Hermite Polynomials and the DervativUes of the Error Function.)
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